

CHIPSat – A Node on the Internet

Author: Jeff Janicik
Presented by Will Marchant, Univ. of CA, Berkeley

CHIPSat Background

- First NASA University Explorer (UNEX) project (~\$13-15M)
 - P.I., Mark Hurwitz, Space Sciences Laboratory (SSL), Berkeley, CA
- SpaceDev selected to design mission, provide bus, integrate, and operate for 1-year
 - Single-string, COTS, and modular industry standards hardware/software approach
 - Fixed solar arrays on all sides for power positive in all modes
 - 300 MIPS PowerPC750-based single board computer with VxWorks RTOS
 - End-toEnd Link: IP-based software and communications architecture

On-Board Implementation

Cosmic Hot Interstellar Plasma Spectrometer

- TCP/IP is a natural choice for the transport of complex data streams
 - Fundamental requirement of all satellite systems is the communication between devices contained within a satellite and the ground station
 - Using TCP/IP reduces this task to resource integration
- VxWorks (and other commercial RTOS's) are proven flight system resources
 - The TCP/IP protocol stack, socket, message queue, and tasking are already available as system resources
- HDLC & Bi-phase (or NRZI) provides data link layer for interface for transceivers

CHIPSat is the first NASA mission to use end-to-end IP-based communications

How It Stacks Up

Cosmic Hot Interstellar Plasma Spectrometer

100BASE-T or Satellite RF Ethernet or HDLC TCP UDP Telnet FTP Custom Sockets SNTP

Downlink:

FTP - Stored Science Data

FTP - Stored H/Keeping Data

Uplink:

FTP – Stored timed-file commands

Downlink:

UDP - Real-Time Science Data

UDP - Real-Time H/Keeping Data

Uplink:

UDP - All real-time commanding

Trade-Offs

Cosmic Hot Interstellar Plasma Spectrometer

Packet-dropping

- TCP: 100% reliability via transparent re-transmit without use of any application s/w
- UDP: CHIPSat flight s/w command protocol uses operatorverified echoes to provide positive acknowledgement

Bandwidth

3-6% framing overhead with TCP& UDP

Data-Latency

- Our research and testing (Poway / Berkeley / Adelaide) to date indicates that for LEO missions, latency is not increased significantly by the space segment
- Challenges associated with deep-space and straight IP
 - TCP will not work due to longer latency
 - UDP would require some customization for efficient communication

TCP Analysis Results

Overview of CHIPSat Data Flow

Day-in-the-Life of a CHIPSat Packet

- Command issued by an MCC client as TCP/IP packet to SpaceDev MCC server; SpaceDev MCC Server validates and forwards on as UDP/IP packet
- 2. Packets are routed to appropriate SpaceDev router through the VPN; Router validates and then outputs packets within an HDLC frame
 - SpaceDev router bridges two interfaces: HDLC & Ethernet
- 3. HDLC frame enabled by switchbox to be modulated onto an S-Band carrier; transmitted by ground station
 - SpaceDev switchbox provides digital serial port to analog RF
- CHIPSat receiver demodulates and passes HDLC frame on to CHIPSat flight computer; HDLC serial port strips off each frame, validates, and forwards as UPD/IP packet

Secure Networking

- VPN utilizes multiple Internet Protocol Security (IPSec) tunnels
 - Firewall used in conjunction with VPN
 - Provides Authentication and Encryption
 - As used in corporate transactions
 - Only pre-authorized computers have access to s/c resources
- MCC Computers are password protected
- Written details of architecture secure
- Implementation can be at any site with a fixed IPaddress, PC and Windows OS

Data Volume Overview

Cosmic Hot Interstellar Plasma Spectrometer

DOWNLINK VOLUME				
Factor	BGS	ITR	Units	
Min Time b/w passes	13.00	20.00	mins	
Min Pass Duration	180.00	180.00	seconds	
FTP Handshake Time	20	20	seconds	
FTP Efficiency	0.9	0.9	ratio	
Downlink datarate	115200	38400	bps	
Data Volume	16.6	4.2	MB / day	

GENERATED VOLUME				
Source	Quantity	Units		
S/C housekeeping	2.2	MB / day		
CHIPS total	14.3	MB / day		
Total Volume	16.5	MB / day		

Data Volume Margin				
Total Produced	16.5	MB / day		
Total Downlink	20.8	MB / day		
Margin	25.9	%		

ASSUMPTIONS

- 1) no pass-specific S/C pointing maneuvers
- 2) actual BGS mask; 10-degree mask at ITR
- 3) Fedsat in sun-sync orbit at 600 km altitude
- 4) 30W ITR uplink power; 10W BGS uplink power
- 5) Bi-phase data encoding
- 6) Local CHIPSat Router PC FTP sessions with store-and-forward data delivery to the MCC

Results to Date

- >1000 passes, 154 days
- ~14 MB average download per day
- Data Latency
 - ~95% of latency occurs on the terrestrial portion for Wallops and ITR
 - ~80% for BGS due to less latency for short CA hop
- Internet outages
 - 5 occurrences during a pass since launch
 - Outage averages <5 minutes and is sometimes intermittent
 - Store and forward capability with Router allows for retransmission immediately after Internet is back on-line

Future Plans

- Continued use of TCP/UDP/IP for end-to-end LEO microsat communications
 - As a bus comm protocol, TCP/UDP/IP reduces software development cost and leverages the latest OS and embedded software advancements
 - Other payload protocols (I.e, SGLS, STDN, etc.) can be encapsulated within TCP/UDP/IP datagrams if necessary
- Improve bandwidth efficiency
 - IP is bandwidth inefficient; SpaceDev is investigating methods of improvement in software with its router and microsat operating system
- Extension of a LAN to a WAN
 - SpaceDev will be working on intersatellite comm using TCP/UDP/IP

SpaceDev Contacts

- Jeff Janicik, Vice President of Engineering
 - Jeff@spacedev.com, (858) 375-2042
- Jonathan Wolff, Electrical/Software Engineer
 - Jonathan@spacedev.com, (858) 375-2034